r ~ uM-FPU V3 IDE
Y Release 3.3.0
b New Compiler

Micromega Corporation

Introduction

Release 330 of the uM-FPU V3 IDE has a completely rewritten compiler with an expanded set of operators, operator
precedence, and control statements. The new code generator produces very efficient code for the FPU. An extensive
list of functions and procedures makes it possible to implement most code using high-level code.

Expanded list of basic operators Control statements
+ Addition IF...THEN...ELSE
- Subtraction FOR. .LOOP
* Multiplication DO...WHILE...UNTIL...LOOP
/ Division SELECT...CASE
% Modulo
** Power User-defined functions
| Bitwise-OR * can have up to nine parameters
N * can return a value

Bitwise-XOR

& Bitwise-AND

<< Shift left

>> Shift right

~ Ones complement
+ Unary plus

- Unary minus

» can be included in math expressions

Expanded set of functions and procedures
* Math Functions
* ADC Functions
» Serial Input/Output
+ String Functions
* Timer Functions

Operator precedence : _
e Matrix Functions

~ 4 -

ok * EEPROM Functions

*/ » External Input / Output
+- * Miscellaneous Functions
<< >> * Debug Functions

&

A

Micromega Corporation 1 Revised 2010-08-09

Table of Contents

Introduction

Table of Contents

Summary of Functions

Control Statements . ceveeeeiiieeeeeen
Function Directives ..o eveeeiiiiiiiiiiiiiiiieeeeen,
Math FUNCLIONS «eevvieiieiie e
ADC FUNCHIONS - v et
Serial Input/Outputoooooeeeeei
String FUNCHIONS .vvvveeiiiiiiieiiiicci
Timer FUNCLIONS «vvvieiieiieii e
Matrix FUNCLIONS -« voeeeieiiii e
EEPROM FUNCLONS «+rvieeeeiiiiiaiiiieieiiieieieeeene,
External Input / Outputoooovmiiiii,

Miscellaneous Functions

Debug FUNCHIONS ----xuvvemmmmminiiiiiiiiiiiiiiiiiiiiiiiiins

Compiler Reference

ADCFLOAT e
ADCLONG -ceieiieii e
ADCMODE ..o

Conditional EXpressions --......ceeeeeeeeeiiiiiiinieeeennn,
CONTINUE oot

EXPressions «..v.ovvvveiiiiiiiiii
EXTLONG -cvvniiiiiiiiiiiiici e,
EXTSET oo
EXTWAIT oo,

FLOOKUP e
FOR...INEXT -t
FTABLE - ceeeieii e

IF.. THEN...ELSE ..o,
Line ContinUation - cocoeeeieieiii e
LLOOKUP et
LOADMA, LOADMB, LOADMC
LTABLE - e

Micromega Corporation

uM-FPU V3 IDE R330 Beta

READVAR ot 4

T 0 42
SAVEMA, SAVEMB, SAVEMOC ...iiiiiiiiiiii e 42
L] = I O I 7 43
SELECTMA, SELECTMB, SELECTMC ..iuniiiiiiiiiiii i 44
L = 1 S 45
L = 1 15 1 S 49
X N L S PP 50
LTI 1= 2 I =S 51
LTI 3 | S 51
LTI e 1= 0 S 52
LS I =31 53
LTI 1 o 0 7 S 53
LTI 1 S 54
LTI 1 S 55
X I 2 1 0 1 T PP 55
L] Tl o] =1 -1 | U 56
LTI 1] S 56
LTI 1] S 57
B 1 (07 S 1 PP RRPPI 57
B I 1Y = 0) PP RRPPR 58
L3S = P 58
TRACEON, TRACEOFF e ittt e e e e e e e an s 59
TR A CE R E G - ettt ettt et e et e e nanaas 59
LR 70 S 1 TP 60
W LST=Y 20 L=y iTa Y=o B LU a o110 < 60

Defining FUNCHONS ««vuuuiieiiieee e 60

Passing Parameters and Return ValUescuuiiiiiiiiiiiiiiii e 61

Calling FUNCHONS «-nu e e e e 61

N 2XeY = Y0 I LU 103 0] R 7= 1 £ 62
L el 1] PP 62
e =y 0 N [1T 62
-] AN | PP 63
21 0 PP 64
L L 1 L 0] 1 PP 64

Micromega Corporation 3 uM-FPU V3 IDE R330 Beta

Summary of Functions

Control Statements

CONTINUE
DO | [DO] WHILE conditionl
statements
[CONTINUE]
[EXIT]
LOOP | [LOOP] UNTIL condition2
EXIT

FOR register

[EXIT]

NEXT

IF
IF
IF
IF

IF

condition
condition
condition
condition

condition

Summary of Functions

= startExpression TO | DOWNTO endExpression [STEP stepExpression]
[statements]
[CONTINUE]

THEN CONTINUE

THEN EXIT

THEN RETURN

THEN equalsStatement

THEN

statements
[ELSEIF condition THEN
statements]...

[ELSE

statements]

ENDIF

RETURN [returnValue]

SELECT compareItem
statements

[CASE compareValue [,

statements]...

[ELSE

statements]
ENDSELECT

STATUS (conditionCode)

Function Directives

#EEFUNC number name[(arglType, arg2Type,
#EEFUNC number name([arglType, arg2Type,
#EEFUNCTION [number] name[(arglType, arg2Type,
#EEFUNCTION [number] name([arglType, arg2Type,

#END

#FUNC number name[(arglType, arg2Type,
#FUNC number name([arglType, arg2Type,
#FUNCTION number name[(arglType, arg2Type,
#FUNCTION number name([arglType, arg2Type,

compareValue]...

returnType]

e
...]) returnType]

...]) returnType]

e
...]) returnType]

Micromega Corporation

uM-FPU V3 IDE Release 330

Math Functions

result = SQRT(argl)
result = LOG(argl)

result = LOG1l0(argl)
result = EXP(argl)

result = EXP10(argl)
result = SIN(argl)

result = COS(argl)

result = TAN(argl)

result = ASIN(argl)
result = ACOS(argl)
result = ATAN(argl)
result = ATAN2(argl, arg2)
result = DEGREES(argl)
result = RADIANS(argl)
result = FLOOR(argl)
result = CEIL(argl)
result = ROUND(argl)
result = POWER(argl, arg2)
result = ROOT(argl, arg2)
result = FRAC(argl)
result = INV(argl)

result = FLOAT(argl)
result = FIX(argl)

result = FIXR(argl)
result = ABS(argl)

result = MOD(argl, arg2)
result = MIN(argl, arg2)
result = MAX(argl, arg2)

ADC Functions

result = ADCFLOAT (channel)

result = ADCLONG(channel)

ADCMODE (MANUAL TRIGGER, repeat)
ADCMODE (EXTERNAL_ TRIGGER, repeat)
ADCMODE (TIMER _TRIGGER, repeat, period)
ADCMODE (DISABLE)

ADCSCALE (channel, scaleFactor)
ADCTRIG

ADCWAIT

Serial Input/Output

SERIAL(SET BAUD, baud)
SERIAL(WRITE TEXT, string)
SERIAL (WRITE TEXTZ, string)
SERIAL (WRITE_STRBUF)
SERIAL (WRITE_STRSEL)
SERIAL (WRITE_CHAR, value)
SERIAL(DISABLE INPUT)
SERIAL (ENABLE CHAR)
SERIAL(STATUS CHAR)

result = SERIAL(READ CHAR)
SERIAL (ENABLE NMEA)

SERIAL (STATUS_NMEA)
SERIAL(READ NMEA)

Summary of Functions

Micromega Corporation 5

uM-FPU V3 IDE Release 330

Summary of Functions

String Functions

FTOA (value, format)
LTOA(value, format)
STRBYTE (value)
STRFCHR (string)
STRFIELD(field)
STRFIND(string)
result = STRFLOAT()
STRINC (increment)
STRINS (string)
result = STRLONG()
STRSEL([start,] length)
STRSET (string)

Timer Functions

result = TICKLONG()
result = TIMELONG()
TIMESET (seconds)

Matrix Functions

FFT(type)

result = LOADMA(row, column)
result LOADMB (row, column)
result = LOADMC(row, column)
MOP (SCALAR SET, value)
MOP (SCALAR_ADD, value)
MOP (SCALAR_SUB, value)
MOP (SCALAR_SUBR, value)
MOP (SCALAR MUL, value)
MOP (SCALAR DIV, value)
MOP (SCALAR DIVR, value)
MOP (SCALAR_POW, value)
MOP (EWISE_ SET)

MOP (EWISE_ADD)

MOP (EWISE SUB)

MOP (EWISE_SUBR)

MOP (EWISE MUL)

MOP (EWISE DIV)

MOP (EWISE DIVR)

MOP (EWISE_ POW)

MOP (MULTIPLY)

MOP (IDENTITY)

MOP (DIAGONAL, value)

MOP (TRANSPOSE)

return = MOP (COUNT)
return = MOP(SUM)

return MOP (AVE)

return MOP (MIN)

return MOP (MAX)

MOP (COPYAB)

MOP (COPYAC)

MOP (COPYBA)

MOP (COPYBC)

MOP (COPYCA)

MOP (COPYCB)

return = MOP(DETERMINANT)

Micromega Corporation 6 uM-FPU V3 IDE Release 330

MOP (LOADRA)
MOP (LOADRB)
MOP (LOADRC)
MOP (LOADBA)
MOP (LOADCA)
MOP (SAVEAR)
MOP (SAVEAB)
MOP (SAVEAC)

SAVEMA (row, column, value)
SAVEMB (row, column, value)
SAVEMC (row, column, value)
SELECTMA (reg, rows, columns)
SELECTMB(reg, rows, columns)
SELECTMC(reg, rows, columns)

EEPROM Functions

result
result

EEFLOAT (slot)
EELONG(slot)

EESAVE (slot, value)

External Input / Output

result =

EXTLONG()

EXTSET (value)

EXTWAIT

SETOUT (pin, LOW)
SETOUT (pin, HIGH)
SETOUT (pin, TOGGLE)
SETOUT (pin, HIZ)

Miscellaneous Functions

result = FCNV(value, conversion)
FLOOKUP (value, item0,
FTABLE (value, cc, item0,
LLOOKUP (value, item0,
LTABLE (value, cc, itemO,

result =
result =
result =
result =
result =
result =

POLY (value, coeffl,
READVAR (number)

Debug Functions

BREAK
TRACEON
TRACEOFF

TRACEREG (req)
TRACESTR(string)

Summary of Functions

Micromega Corporation

uM-FPU V3 IDE Release 330

Compiler Reference

Compiler Reference

ADCFLOAT
Returns the scaled floating point value from the last reading of the specified ADC channel.
Syntax
result = ADCFLOAT (channel)
Name Type Description
result float The last ADC reading from the selected channel, multiplied by
the scale factor.
channel long constant ADC channel. (0 or 1)
Notes

This function waits until the Analog-to-Digital conversion is complete, then returns the floating point value
from the last reading of the specified ADC channel, multiplied by the scale factor specified for that channel. The
scale factor is set by the ADCSCALE procedure (the default scale factor is 1.0). This function will only wait if
the instruction buffer is empty. If there are other instructions in the instruction buffer, or another instruction is
sent before the ADCFLOAT function has been completed, the function will terminate and the previous value for
the selected channel will be returned.

Examples
result = ADCFLOAT(0) ; returns the value for A/D channel 0
; if A/D reading is 200, and scale multiplier = 1.0, result = 200.0
; if A/D reading is 200, and scale multiplier = 1.5, result = 300.0
See Also

ADCLONG, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPU V3 Instruction Set: ADCLOAD

ADCLONG
Returns the long integer value from the last reading of the specified ADC channel.
Syntax
result = ADCLONG(channel)
Name Type Description
result long The last ADC reading from the selected channel.
channel long constant A/D channel. (0 or 1)
Notes

Micromega Corporation 8 uM-FPU V3 IDE Release 330

Compiler Reference

This function waits until the Analog-to-Digital conversion is complete, then returns the long integer value from
the last reading of the specified ADC channel. This function will only wait if the instruction buffer is empty. If
there are other instructions in the instruction buffer, or another instruction is sent before the ADCLONG function
has been completed, the function will terminate and the previous value for the selected channel will be returned.

Examples
result = ADCLONG(0) ; returns the value for A/D channel 0
: if A/D channel 0 is 200, result = 200
See Also

ADCFLOAT, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPU V3 Instruction Set: ADCLONG

ADCMODE

Set the trigger mode of the Analog-to-Digital Converter (ADC).

Syntax
ADCMODE (MANUAL TRIGGER, repeat)
ADCMODE (EXTERNAL TRIGGER, repeat)
ADCMODE (TIMER_TRIGGER, repeat, period)

ADCMODE (DISABLE)
Name Type Description
repeat long constant The number of additional samples taken at each trigger (0-15).
period long expression The period in microseconds (>= 100).
Notes

When the ADC is triggered the ADC channels are sampled, and the repeat count specifies the number of
additional samples that are taken. The ADC reading is the average of all samples. There are three ADC trigger
modes: Manual, External, and Timer.

When the ADC is enabled for manual trigger, the Analog-to-Digital conversions are triggered by calling the
ADCTRIG procedure. If a conversion is already in progress, the trigger is ignored. This mode is the easiest to use
since the trigger is software controlled. Manual trigger is used for applications that only require occasional Analog-
to-Digital sampling, or that don’t require a periodic sampling rate.

When the ADC is configured for external trigger, Analog-to-Digital conversions are triggered by the rising edge of
the input signal on the EXTIN pin. To avoid missing samples, the program must read the ADC value before the next

Micromega Corporation 9 uM-FPU V3 IDE Release 330

Compiler Reference

trigger occurs. External input trigger is used for applications that need to synchronize that Analog-to-Digital
conversion with an external signal.

When the ADC is configured for timer trigger, Analog-to-Digital conversions are triggered at a specific time interval.
The time interval is set with the period parameter, which specifies the time interval in microseconds. The
minimum time interval is 100 microseconds and the maximum time interval is 4294.967 seconds. Short time
intervals (from 100 microseconds to 2 milliseconds) are accurate to the microsecond, whereas longer time intervals
(greater than 2 milliseconds) are accurate to the millisecond. To avoid missing samples, the program must read the
ADC value before the next trigger occurs. Timer trigger is used for applications that need to sample an analog input
at a specific frequency.

The ADC can be disabled by calling the ADCMODE (DISABLE) procedure.

Examples
ADCMODE (MANUAL_TRIGGER, 0) ; manual trigger, 1 sample per trigger
ADCMODE (EXTERNAL_TRIGGER, 4) ; external input trigger, 5 samples per trigger

ADCMODE (TIMER TRIGGER, 0, 1000) ;timer trigger every 1000 usec, 1 sample per trigger

See Also
ADCFLOAT, ADCLONG, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPU V3 Instruction Set: ADCMODE

ADCSCALE

Sets the scale value for the ADC channel.

Syntax
ADCSCALE (channel, scaleFactor)
Name Type Description
channel long constant ADC channel (0 or 1).
scaleFactor float expression Scale factor.
Notes

This sets the scale value for the specified ADC channel. The scale factor is used by the ADCFLOAT instruction
to return a scaled, floating point ADC value.

Examples
The following example scales the ADC readings so that ADCFLOAT returns the analog value in volts. The scale

factor is set to the operating voltage (5V), divided by the the number of ADC steps (the uM-FPU V3.1 FPU has
a 12-bit ADC, so there are 4095 steps).

ADCSCALE(0, 5/4095) ; set scale factor for channel O for range of 0.0 to 5.0

See Also

Micromega Corporation 10 uM-FPU V3 IDE Release 330

Compiler Reference

ADCFLOAT, ADCLONG, ADCMODE, ADCTRIG, ADCWAIT
uM-FPU V3 Instruction Set: ADCSCALE

ADCTRIG

Triggers an ADC conversion.

Syntax
ADCTRIG

Notes
This procedure is only required is the ADC trigger mode has been set to manual.

Examples

; setup
ADCMODE (MANUAL TRIGGER, 0) ; set manual trigger, 1 sample per trigger

; sample
ADCTRIG ; trigger the conversion
adcval = ADCFLOAT(0) ; get the ADC value from channel O

See Also
ADCFLOAT, ADCLONG, ADCMODE, ADCSCALE, ADCTRIG, ADCWAIT
uM-FPU V3 Instruction Set: ADCTRIG

ADCWAIT

Waits until the next ADC value is ready.

Syntax
ADCWAIT

Notes
This procedure is used to wait until the next ADC value is ready. This procedure only waits if the instruction

buffer is empty. The IDE compiler automatically adds an FPU wait call if the procedure is called from
microcontroller code. If this procedure is used in a user-defined function, the user must be sure that an FPU wait
call is inserted in the microcontroller code immediately after the function call. If there are other instructions in
the instruction buffer, or another instruction is sent before the ADCWAIT procedure has completed, it will
terminate and return.

Examples

Micromega Corporation 11 uM-FPU V3 IDE Release 330

Compiler Reference

; setup
ADCMODE (TIMER TRIGGER, 0, 1000) ;settimer trigger every 1000 usec, 1 sample per trigger

; sample
do
ADCWAIT ; wait for the next ADC value
adcval = ADCFLOAT(0) ; get the ADC value from channel O
loop

See Also
ADCFLOAT, ADCLONG, ADCMODE, ADCSCALE, ADCTRIG
uM-FPU V3 Instruction Set: ADCWAIT

BREAK

Debug breakpoint.

Syntax
BREAK

Notes
If the debugger is enabled, a debug breakpoint occurs, and the debugger is entered. If the debugger is disabled,

this procedure is ignored.

Examples

BREAK ; stop execution and enter the debugger

See Also
TRACEOFF, TRACEON, TRACEREG, TRACESTR
uM-FPU V3 Instruction Set: BREAK

Conditional Expressions

Conditional expressions are used by control statements to determine if a statement or group of statements will
be executed.

Syntax
conditional expression:
[NOT] relational expression [[AND | OR] [NOT] relational expression]...

relational expression:

expression

expression < | <= | = | <> | > | >= expression

STRSEL([[start,]lengthl]) < | <= | = | <> | > | >= string constant
STRFIELD([field]) < | <= | = | <> | > | >= string constant

STATUS (condition code)

Examples

Micromega Corporation 12 uM-FPU V3 IDE Release 330

Compiler Reference

x equ F10
n equ L11

if log(x) < 0.3 then n =n + 1
if n then exit
if n > 1 AND n < 5 then x = 0
if NOT (n > 1 AND n < 10) or n = 5 then continue
if strfield(l) = "GPRMC" then
; statements

endif

if status(GT) then return

See Also
Expressions, DO...WHILE...UNTIL...LOOP, IF...THEN, IF...THEN...ELSE

CONTINUE

Continues execution at the next iteration of the loop.

Note: Must be used inside a FOR. . .NEXT or DO...WHILE...LOOP. . .UNTIL control statement.

Syntax
CONTINUE

Notes

Continues execution at the next iteration of the innermost loop that the CONTINUE statement is contained in.

Examples

n equ L10
X equ Fl1

FOR n = 1 TO 100
; statements
if x > 1500 then CONTINUE ; continue execution at next iteration of the DO loop
; statements

NEXT

See Also
DO...WHILE...UNTIL...LOOP, EXIT, FOR...NEXT, IF...THEN, RETURN

DO...WHILE...UNTIL...LOOP

Repeatedly execute a group of statements while specified conditions are true.
Note: Must be used inside a user-defined procedure or function.

Micromega Corporation 13 uM-FPU V3 IDE Release 330

Compiler Reference

Syntax
DO | [DO] WHILE conditionl
statements
[CONTINUE]
[EXIT]

LOOP | [LOOP] UNTIL condition2

Name Description
conditionl While this condition is true, execute the statements in the loop.
statements One or more statements to be executed each time through the loop.
condition2 While this condition is false, repeat the loop.

Notes

The DO loop will repeatedly execute the statements in the loop. If the WHILE clause is specified, the DO loop
will terminate if conditionl is false. If the UNTIL clause is specified, the DO loop will terminate if condition2 is
true. The WHILE clause is checked at the start of the DO loop, and the UNTIL clause is checked at the end of
the DO loop. If neither a WHILE clause or UNTIL clause is specified, the DO loop will be an infinite loop, and
can only be terminated by an EXIT or RETURN statement. The CONTINUE statement is used to skip ahead to
the end of the DO loop. The EXIT statement is used to immediately terminate the DO loop. The RETURN
statement is used to exit the user-defined function.

Examples

DO ; infinite loop
; statements executed each loop iteration

LOOP

WHILE n > 0 ; loop while n > 0
; statements executed each loop iteration

LOOP

DO ; loop until n > 0

; statements executed each loop iteration
UNTIL n > 0

DO WHILE n >= 10 ; loop while n >= 10 and n <= 20

; statements executed each loop iteration
LOOP UNTIL n > 20

See Also
CONTINUE, EXIT, FOR...NEXT, IF...THEN, IF...THEN...ELSE, RETURN,
SELECT...CASE

Micromega Corporation 14 uM-FPU V3 IDE Release 330

Compiler Reference

EEFLOAT
Returns the floating point value from the specified EEPROM slot.
Syntax
result = EEFLOAT(slot)
Name Type Description
result float The floating point value from the specified EEPROM slot.
slot byte constant EEPROM slot number. (0 to 255)
Examples
result = EEFLOAT(52) ; returns the value from EEPROM slot 52
See Also

EELONG, EESAVE
uM-FPU V3 Instruction Set: EELOAD

EELONG
Returns the long integer value from the specified EEPROM slot.
Syntax
result = EELONG(slot)
Name Type Description
result long The long integer value from the specified EEPROM slot.
slot byte constant EEPROM slot number. (0 to 255)
Examples
result = EELONG(52) ; returns the value from EEPROM slot 52
See Also

EEFLOAT, EESAVE
uM-FPU V3 Instruction Set: EELOAD

EESAVE

Store a long integer or floating point value to an EEPROM slot.

Syntax
EESAVE (slot, value)

Micromega Corporation 15 uM-FPU V3 IDE Release 330

Compiler Reference

Name Type Description

slot long constant EEPROM slot number (0 to 255).

value long expression The value to store in the EEPROM slot.
float expression

Notes
The type of the value expression determines whether a long integer or floating point value is stored.

Examples
EESAVE(1,1.5) ; store the floating point value 1.5 to EEPROM slot 1
EESAVE(2,100) ; store the long integer value 100 to EEPROM slot 2
See Also

EEFLOAT, EELONG
uM-FPU V3 Instruction Set: EESAVE

EXIT

Terminates the loop.
Note: Must be used inside a FOR. . .NEXT or DO...WHILE...LOOP...UNTIL control statement.

Syntax
EXIT

Notes
Terminates execution of the innermost loop that the EXIT statement is contained in.

Examples

n equ L10
X equ Fl11

FOR n = 1 TO 100
; statements
if x > 1500 then EXIT ; exit the FOR loop
; statements

NEXT

See Also
CONTINUE, DO...WHILE...UNTIL...LOOP, EXIT, FOR...NEXT, IF...THEN, RETURN

Expressions

Micromega Corporation 16 uM-FPU V3 IDE Release 330

Compiler Reference

A primary expression consists of a register, variable, math function, or user-defined function. Primary
expressions can also be combined with math operators and parenthesis to implement more complex numeric
expressions.

The math operators are as follows:

Math Operator |Description

I Bitwise-OR

A Bitwise-XOR

& Bitwise-AND
<< Shift left
>> Shift right

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo operation
o Power

~ Ones complement
+ Unary plus

- Unary minus

Operator Precedence
-+ -
* %
* /9
+ -
<< >>

Syntax
expression:
bitwise-OR-expression

bitwise-OR-expression:
bitwise-XOR-expression
| bitwise-XOR-expression

bitwise-XOR-expression:
bitwise-AND-expression
* bitwise-AND-expression

bitwise-AND-expression:
shift-expression
& shift-expression

Micromega Corporation 17 uM-FPU V3 IDE Release 330

Compiler Reference

shift-expression:
additive-expression
<< | >> additive-expression

additive-expression:
multiplicative-expression
+ | - multiplicative-expression

multiplicative-expression:
power-expression
* | / | % power-expression

power-expression:
unaryExpression
** uynaryExpression

unary-expression:
primary-expression
~ | + | - primary-expression

primary expression:
(expression)
FLOAT (expression)
FIX(expression)
FIXR(expression)
mathFunction
userFunction
register
variable

Examples

angle = sin(n + pi/2)
angle = (n << 8) + m % 5
n=n ** 3

See Also
Conditional Expressions, FOR...NEXT, SELECT...CASE

EXTLONG

Returns the value of the external input counter.

Syntax
result = EXTLONG()
Name Type Description
result long The value of the external input counter.
Examples

Micromega Corporation 18 uM-FPU V3 IDE Release 330

result = EXTLONG()

See Also

EXTSET, EXTWAIT
uM-FPU V3 Instruction Set: EXTLONG

Compiler Reference

; returns the value from the external input counter

EXTSET

Sets the value of the external input counter.

Syntax
EXTSET (value)
Name Type Description
value long expression The external input counter is set to this value.
Notes

If value <> -1, the external input counter is set to that value and the counter is enabled.
If value = -1, the external counter is disabled.
The external counter counts the rising edges that occur on the EXTIN pin.

Examples

EXTSET(0)

See Also

; the external input counter is set to zero

EXTLONG, EXTWAIT
uM-FPU V3 Instruction Set: EXTSET

EXTWAIT

Wait for the next external input to occur.

Syntax
EXTWAIT

Notes

This procedure is used to wait until the next external input occurs. This procedure only waits if the instruction
buffer is empty. The IDE compiler automatically adds an FPU wait call if the procedure is called from
microcontroller code. If this procedure is used in a user-defined function, the user must be sure that an FPU wait
call is inserted in the microcontroller code immediately after the user-defined function call. If there are other
instructions in the instruction buffer, or another instruction is sent before the EXTWAIT procedure has
completed, it will terminate and return.

Examples

Micromega Corporation

19 uM-FPU V3 IDE Release 330

TIMESET(0)
EXTSET(0)

EXTWAIT
usec = TICKLONG()

See Also
EXTLONG, EXTSET

uM-FPU V3 Instruction Set: EXTWAIT

; clear the internal timer
; clear the external input counter

; wait for the next external input
; get the elapsed time

Compiler Reference

FCNV

Converts a floating point value using one of the built-in conversions.

Syntax
result = FCNV(value, conversion)
Name Type Description
result float The converted value.
value float expression The value to convert.
conversion long constant The conversion number or conversion symbol. (see list below)
Notes

The FCNV function has pre-defined symbols for all conversion numbers as shown in the table below. If the
conversion number is out of range, the value is returned with no conversion.

Conversion| Conversion Description Conversion
Number Symbol
0 F C Fahrenheit to Celsius result = value * 1.8 + 32
1 C F Celsius to Fahrenheit result = (value - 32) * 1.8
2 IN MM inches to millimeters result = value * 25.4
3 MM IN millimeters to inches result = value / 25 4
4 IN CM inches to centimeters result = value * 2.54
5 CM_IN centimeters to inches result = value / 2.54
6 IN M inches to meters result = value * 0.0254
7 M IN meters to inches result = value / 0.0254
8 FT M feet to meters result = value * 0.3048
9 M FT meters to feet result = value / 0.3048
10 YD M yards to meters result = value * 0.9144
11 M YD meters to yards result = value / 0.9144
12 MILES KM miles to kilometers result = value * 1.609344
13 KM_MILES kilometers to miles result = value / 1.609344
14 NM M nautical miles to meters | result = value * 1852.0
15 M NM meters to nautical miles | result = value / 1852.0
16 ACRES_M2 acres to meters? result = value * 4046.856422
17 M2 ACRES meters to acres result = value / 4046.856422

Micromega Corporation

20

uM-FPU V3 IDE Release 330

Compiler Reference

18 0Z G ounces to grams result = value * 28.34952313
19 G_0Z grams to ounces result = value / 28.34952313
20 LB KG pounds to kilograms result = value * 0.45359237
21 KG_LB kilograms to pounds result = value / 0.45359237
22 USGAL L US gallons to liters result = value * 3.7854111784
23 L USGAL liters to US gallons result = value / 3.7854111784
24 UKGAL L UK gallons to liters result = value * 4.546099295
25 L_UKGAL liters to UK gallons result = value / 4.546099295
26 US0Z_ ML |US fluid ounces to milliliters | result = value * 29.57352956
27 ML_USOZ |milliliters to US fluid ounces | result = value / 29.57352956
28 UKOZ ML |UK fluid ounces to milliliters| result = value * 28.41312059
29 ML UKOZ |milliliters to UK fluid ounces| result = value / 28.41312059
30 CAL J calories to Joules result = value * 4.18605
31 J CAL Joules to calories result = value / 4.18605
32 HP W horsepower to watts result = value * 745.7
33 W_HP watts to horsepower result = value / 745.7
34 ATM KP atmospheres to kilopascals | result = value * 101.325
35 KP_ATM kilopascals to atmospheres | result = value / 101.325
36 MMHG_KP mmHg to kilopascals result = value * 0.1333223684
37 KP MMHG kilopascals to mmHg result = value / 0.1333223684
38 DEG_RAD degrees to radians result = value * 5t/ 180
39 RAD_ DEG radians to degrees result = value * 180 / 7
Examples

distance = FCNV (200, FT M) ; returns 60.96 (meters)

tempF = FCNV (100, C_F) ; returns 212.0 (degree fahrenheit)

tempF = FCNV(100, 1) ; returns 212.0 (degree fahrenheit)

See Also

uM-FPU V3 Instruction Set: FCNV

FFT
Perform a Fast Fourier Transform.
Syntax
FFT(type)
Name Type Description
Micromega Corporation 21 uM-FPU V3 IDE Release 330

Compiler Reference

type

long constant

The type of FFT operation:
FIRST STAGE
NEXT STAGE
NEXT LEVEL
NEXT BLOCK

Modifiers:
+REVERSE bit reverse sort pre-processing
+PRE pre-processing for inverse FFT
+POST post-processing for inverse FFT

Notes

The data for the FFT instruction is stored in matrix A as a Nx2 matrix, where N must be a power of two. The
data points are specified as complex numbers, with the real part stored in the first column and the imaginary part
stored in the second column. If all data points can be stored in the matrix (maximum of 64 points if all 128
registers are used), the Fast Fourier Transform can be calculated with a single instruction. If more data points
are required than will fit in the matrix, the calculation must be done in blocks. The algorithm iteratively writes
the next block of data, executes the FFT instruction for the appropriate stage of the FFT calculation, and reads
the data back to the microcontroller. This proceeds in stages until all data points have been processed.

See Application Note 35 - Fast Fourier Transforms using the FFT Instruction for more details.

Examples

FFT(FIRST_ STAGE+REVERSE)

See Also

uM-FPU V3 Instruction Set: FFT

; perform FFT in single instruction

FLOOKUP

Returns a floating point value from a lookup table.
Note: Must be used inside a user-defined procedure or function.

Syntax
result FLOOKUP (value, item0, iteml, ...)
Name Type Description
result float The returned value.
value long expression The lookup index for the lookup table.
itemo, float constant The list of floating point constants for the lookup table.
iteml,
Notes

Micromega Corporation

22 uM-FPU V3 IDE Release 330

Compiler Reference

The lookup index is used to return the corresponding item from the lookup table. The items are indexed
sequentially starting at zero. If the index is less than zero, the first item in the table is returned. If the index
value is greater than the length of the table, the last item in the table is returned.

Examples

result = FLOOKUP(n, 0, 1.0, 10.0, 100, 1000) ;ifn=2,then 10.0 is returned

See Also
FTABLE, LLOOKUP, LTABLE
uM-FPU V3 Instruction Set: TABLE

FOR...NEXT

Executes a group of statements a specified number of times.
Note: Must be used inside a user-defined procedure or function.

Syntax
FOR register = startExpression TO | DOWNTO endExpression [STEP stepExpression]
[statements]

[CONTINUE]
[EXIT]
NEXT
Name Description
register A register that is incremented or decremented each time through the loop. The
register can be a floating point register or a long integer register.

startExpression A numeric numeric expression for the starting value of register.

endExpression A numeric numeric expression for the ending value of register.

stepExpression A numeric numeric expression for the step value of register.

statements One or more statements to be executed each time through the loop.

Notes

Before the FOR loop begins, the register is set to the value of startExpression. At the start of each FOR loop, the
register value is compared to the endExpression value. If TO is used, and the register value is greater than the
endExpression value, the FOR loop is terminated. If DOWNTO is used, and the register value is less than the

endExpression value, the FOR loop is terminated. If the FOR loop does not terminate, the statements in the FOR
loop are executed. When the NEXT statement is encountered, the value of stepExpression is added to the

register if TO is used, or subtracted from the register if DOWNTO is used, and execution returns to the start of the

FOR loop. If the STEP clause is not included, stepExpression is 1. The stepExpression must be a positive value
for the loop to terminate. The CONTINUE statement is used to skip ahead to the NEXT statement. The EXIT
statement is used to immediately terminate the FOR loop. The RETURN statement is used to exit the user-
defined function.

Examples

Micromega Corporation 23 uM-FPU V3 IDE Release 330

Compiler Reference

n equ L10
X equ Fl11

FOR x = 1 to 10 STEP 0.5 ;x=10,15,20,...,100
; statements executed each loop iteration
if n > 1500 then EXIT

NEXT

n equ L10
X equ Fl1

FOR n = 10 DOWNTO 1 ;n=10,9,8,...,1
; statements executed each loop iteration
if x > 1500 then CONTINUE
; statements only executed if x <= 1500

NEXT

See Also
CONTINUE, DO...WHILE...UNTIL...LOOP, EXIT, IF...THEN, IF...THEN...ELSE,
RETURN, SELECT...CASE

FTABLE

Returns the index of the first item in the list that satisfies the condition code.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = FTABLE(value, cc, item0, iteml, ...)
Name Type Description
result long The index of the first item in the lookup table that satisfies the
condition.
value float expression The floating point value to compare with the table items.
cc condition code Condition code.
7z, Nz, EQ, NE, LT, GE, LE, GT
item0, float constant A list of floating point constants for the lookup table.
iteml,
Notes

The specified value is compared to each value in the table, and the index value is returned for the first item that
satisfies the condition code. The index value starts at zero.

Examples
If the condition code is GE, then the items in the list are compared as follows:

value >= itemQ
value >= item1
value >= item?2

Micromega Corporation 24 uM-FPU V3 IDE Release 330

Compiler Reference

index = FLOOKUP(value, GE, 1.0, 5.5, 10.0, 100.0) ;if value = 1, index =0
;if value = 17.5, index = 2

See Also
FLOOKUP, LLOOKUP, LTABLE
uM-FPU V3 Instruction Set: FTABLE

FTOA

Convert floating point value to string.

Syntax
FTOA (value, format)
Name Type Description
value float expression The floating point value to convert.
format long constant The format specifier.
Notes

The floating point value is converted to a string and stored at the string selection point. The selection point is
updated to point immediately after the inserted string, so multiple insertions can be appended.

If the format byte is zero, as many digits as necessary will be used to represent the number with up to eight
significant digits. Very large or very small numbers are represented in exponential notation. The length of the
displayed value is variable and can be from 3 to 12 characters in length. The special cases of NaN (Not a
Number), +infinity, -infinity, and -0.0 are handled. Examples of the ASCII strings produced are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

If the format byte is non-zero, it is interpreted as a decimal number. The tens digit specifies the maximum length
of the converted string, and the ones digit specifies the number of decimal points. The maximum number of
digits for the formatted conversion is 9, and the maximum number of decimal points is 6. If the floating point
value is too large for the format specified, asterisks will be stored. If the number of decimal points is zero, no
decimal point will be displayed. Examples of the display format are as follows: (note: leading spaces are shown
where applicable)

Value in register A Format byte Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) * ok
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

Examples

Micromega Corporation 25 uM-FPU V3 IDE Release 330

In the following example the [] characters are used to shown the string selection point.

X equ F10

STRSET("") ; string buffer = []

FTOA(pi, 0) ; string buffer = 3.1415927[]

STRINS(“,") ; string buffer = 3.1415927, []

X = 2/3

FTOA(X, 63) ; string buffer = 3.1415927, 0.667[]
See Also

LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC,
STRLONG, STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC, STRDEC

Compiler Reference

STRINS,

IF...THEN

Conditionally executes a statement.
Note: Must be used inside a user-defined procedure or function.

Syntax
IF condition THEN CONTINUE
IF condition THEN EXIT
IF condition THEN RETURN
IF condition THEN equalsStatement

Name Description

condition Required. A conditional expression.

CONTINUE Required. The statement is executed if condition is true.
EXIT

RETURN
equalsStatement

Notes
If the condition is true, the statement is executed.

Examples

if sin(angle) < 0.3 then n = 0

if n then return ; if n is not zero, then return

Micromega Corporation 26 uM-FPU V3 IDE Release 330

Compiler Reference

for n =1 to 10

.
R

if m < 0 then exit ; if m is less than zero, then exit from for loop
next

IF...THEN...ELSE

Conditionally executes a statement or group of statements.
Note: Must be used inside a user-defined procedure or function.

Syntax
IF condition THEN
statements
[ELSEIF condition THEN
statements]...
[ELSE
statements)
ENDIF
Name Description
condition A conditional expression.
statements One or more statements that execute if condition is true.
Notes

If the IF condition is true, then the statements following the THEN clause are executed. If the IF condition is
false, then any ELSETF clauses that are included are tested in sequence. If an ELSEIF condition is true, the
statements associated with that ELSEIF clause are executed. If no IF or ELSEIF conditions are true, and an
ELSE clause is included, the statements in the ELSE clause are executed.

Examples

if n > 0 then
m=1

elseif n < 0 then
m= -1

else
m =0

next

See Also
Conditional Expressions, DO...WHILE...UNTIL...LOOP, FOR...NEXT, IF...THEN,
SELECT...CASE

Line Continuation

Micromega Corporation 27 uM-FPU V3 IDE Release 330

Compiler Reference

The underscore character (_) is used as a line continuation character. The underscore must be the last character
on the line, other than whitespace characters or comments. The underscore character must not be placed in the
middle of a number, symbol name or string literal.

Examples

result = FLOOKUP(n, 0.0, 1000.0, 2000.0, _ ; first line
3000.0, 4000.0) ; line continuation

LLOOKUP

Returns a long integer value from a lookup table.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = LLOOKUP(value, item0O, iteml, ...)
Name Type Description
result long The returned value.
value long expression The lookup index.
itemo, long constant The list of long integer constants in the table.
iteml,
Notes

The lookup index is used to return the corresponding item from the lookup table. The items are indexed
sequentially starting at zero. If the index is less than zero, the first item in the table is returned. If the index
value is greater than the length of the table, the last item in the table is returned.

Examples

result = LLOOKUP(n, 0, 1, 10, 100, 1000) ;if n =2, then result = 10.0

See Also
FLOOKUP, FTABLE, LTABLE
uM-FPU V3 Instruction Set: TABLE

LOADMA, LOADMB, LOADMC

Returns the value of an element in the specified matrix. LOADMA accesses matrix A, LOADMB accesses matrix
B, and LOADMC accesses matrix C.

Syntax
result = LOADMA(row, column)

result = LOADMB(row, column)
result = LOADMC(row, column)
Name Type Description

Micromega Corporation 28 uM-FPU V3 IDE Release 330

Compiler Reference

result float The value of the selected matrix element.

row long constant The row number of the matrix element.

column long constant The column number of the matrix element.
Notes

The row and column numbers are used to select the element of the matrix. The row and column numbers start
from zero. If the row or column values are out of range, NaN is returned.

Examples

value = LOADMA(1,2) ; get the value at row 1, column 2 of matrix A

See Also
MOP, SAVEMA, SAVEMB, SAVEMC, SELECTMA, SELECTMB, SELECTMC
uM-FPU V3 Instruction Set: LOADMA, LOADMB, LOADMC

LTABLE

Returns the index of the first table entry that satisfies the condition code. The specified value is compared to
each value in the list of items, and the index value is returned. The index value starts at zero.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = LTABLE(value, cc, item0O, iteml, ...)
Name Type Description
result long The index of the first table entry that satisfies the condition.
value long expression The long integer value to compare with the table items.
cc condition code Condition code.

%, Nz, EQ, NE, LT, GE, LE, GT

itemo, long constant The list of long integer constants for the lookup table.
iteml,

Notes
The specified value is compared to each value in the table, and the index value is returned for the first item that

satisfies the condition code. The index value starts at zero.

Examples
If the condition code is LT, then the items in the list are compared as follows:
value < item0O
value < item1
value < item2

index = LLOOKUP(value, LT, 1, 50, 1000, 10000) ;if value=1,index =1
; if value = 500, index =2

Micromega Corporation 29 uM-FPU V3 IDE Release 330

Compiler Reference

See Also
FLOOKUP, FTABLE, LLOOKUP
uM-FPU V3 Instruction Set: LTABLE

LTOA

Convert long integer value to string.

Syntax
LTOA (value, format)
Name Type Description
value long expression The long integer value to convert.
format long constant The format specifier.
Notes

The long integer value is converted to a string and stored at the string selection point. The selection point is
updated to point immediately after the inserted string, so multiple insertions can be appended.

If the format byte is zero, the length of the converted string is variable and can range from 1 to 11 characters in
length. Examples of the converted string are as follows:

1
500000
-3598390

If the format byte is non-zero, a value between 0 and 15 specifies the length of the converted string. The
converted string is right justified. If the format byte is positive, leading spaces are used. If the format byte is
negative, its absolute value specifies the length of the converted string, and leading zeros are used. If 100 is
added to the format value the value is converted as an unsigned long integer, otherwise it is converted as an
signed long integer. If the converted string is longer than the specified length, asterisks are stored. If the length
is specified as zero, the string will be as long as necessary to represent the number. Examples of the converted
string are as follows: (note: leading spaces are shown where applicable)

Value in register A Format byte Description Display format
-1 10 signed, length = 10 -1
-1 110 unsigned, length = 10 4294967295
-1 4 signed, length = 4 -1
-1 104 unsigned, length = 4 *okkok
0 4 signed, length = 4 0
0 0 unformatted 0
1000 6 signed, length = 6 1000
1000 -6 signed, length = 6, zero fill 001000

Examples

Micromega Corporation 30 uM-FPU V3 IDE Release 330

Compiler Reference

year equ L10
month equ Ll11
day equ Ll11

year = 2010

month = 7

day = 20

STRSET ("Date stamp: ") ; string buffer = Date stamp: []
LTOA(year, 0) ; string buffer = Date stamp: 2010[]
STRINS (“-") ; string buffer = Date stamp: 2010-[]
LTOA(month, 0) ; string buffer = Date stamp: 2010-7[]
STRINS (“-") ; string buffer = Date stamp: 2010-7-[]
LTOA(day, 0) ; string buffer = Date stamp: 2010-7-20[]

See Also
FTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC,
STRLONG, STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC,

STRINS,

STRDEC

Math Functions

All of the math functions supported in the previous version of the IDE are still supported.

Syntax
result = LTABLE(value, cc, item0O, iteml, ...)
Name Type Description
result long The index of the first table entry that satisfies the condition.
value long expression The long integer value to compare with the table items.
cc condition code Condition code.
%z, NZ, EQ, NE, LT, GE, LE, GT
item0, long constant The list of long integer constants for the lookup table.
iteml,
Notes
Function Arguments Return Description
SQORT (argl) Float Float square root of argl.
LOG (argl) Float Float logarithm (base e) of arg!.
LOG10 (argl) Float Float logarithm (base 10) of argl.
EXP (argl) Float Float e to the power of argl.
EXP10 (argl) Float Float 10 to the power of argl.
SIN(argl) Float Float sine of the angle arg/ (in radians).
COS (argl) Float Float cosine of the angle arg/ (in radians).
TAN (argl) Float Float tangent of the angle arg! (in radians).
ASIN (argl) Float Float inverse sine of the value argl.
ACOS (argl) Float Float inverse cosine of the value argl.
ATAN (argl) Float Float inverse tangent of the value argl.
ATAN2 (argl, arg2) Float Float inverse tangent of the value arg/ divided by arg2.
DEGREES (argl) Float Float angle argl converted from radians to degrees.

Micromega Corporation 31 uM-FPU V3 IDE Release 330

RADIANS (argl) Float Float
FLOOR (argl) Float Float
CEIL(argl) Float Float
ROUND (argl) Float Float
POWER (argl, arg2) Float Float
ROOT (argl, arg2) Float Float
FRAC (argl) Float Float
INV (argl) Float Float
FLOAT (argl) Long Float
FIX(argl) Float Long
FIXR(argl) Float Long
ABS (argl) Float/Long Float/Long
MOD (argl, arg2) Float/Long Float/Long
MIN (argl, arg2) Float/Long Float/Long
MAX (argl, arg2) Float/Long Float/Long

Examples

theta = sin(angle)
result = cos(PI/2 + sin(theta))

See Also

Compiler Reference

angle argl converted from degrees to radians.
floor of argl.

ceiling of argl.

argl rounded to the nearest integer.

argl raised to the power of arg2.

arg2 root of argl.

fractional part of argl.

the inverse of arg/.

converts argl from long to float.

converts argl from float to long.

rounds argl then converts from float to long.
absolute value of argl.

the remainder of argl divided by arg2.

the minimum of arg/ and arg2.

the maximum of arg! and arg2.

uM-FPU V3 Instruction Set: Each of the functions uses an FPU instruction of the same name (ABS, MOD, MIN
and MAX use the FABS, FMOD, FMIN, FMAX instructions for floating point data types, and the LABS, LDIV
(remainder), LMIN, LMAX instructions for Long or Unsigned data types).

MOP

Performs matrix operations. The matrix operations are summarized below.

MOP (SCALAR SET, value)
MOP (SCALAR ADD, value)
MOP (SCALAR_SUB, value)
MOP (SCALAR_SUBR, value)
MOP (SCALAR_MUL, value)
MOP (SCALAR_DIV, value)
MOP (SCALAR_DIVR, value)
MOP (SCALAR POW, value)
MOP (EWISE_ SET)

MOP (EWISE_ADD)

MOP (EWISE_ SUB)

MOP (EWISE_SUBR)

MOP (EWISE MUL)

MOP (EWISE DIV)

MOP (EWISE DIVR)

MOP (EWISE_POW)

MOP (MULTIPLY)

MOP (IDENTITY)

MOP (DIAGONAL, value)
MOP (TRANSPOSE)

return = MOP (COUNT)

Micromega Corporation 32

uM-FPU V3 IDE Release 330

return
return
return

MOP (SUM)
MOP (AVE)
MOP (MIN)

return = MOP (MAX)

Compiler Reference

See Also

LOADMA, LOADMB, LOADMC,

SELECTMC

uM-FPU V3 Instruction Set: MOP

MOP (COPYAB)
MOP (COPYAC)
MOP (COPYBA)
MOP (COPYBC)
MOP (COPYCA)
MOP (COPYCB)

return = MOP(DETERMINANT)

MOP (LOADRA)
MOP (LOADRB)
MOP (LOADRC)
MOP (LOADBA)
MOP (LOADCA)
MOP (SAVEAR)
MOP (SAVEAB)
MOP (SAVEAC)

SAVEMA, SAVEMB, SAVEMC, SELECTMA, SELECTMB,

A detailed description of each MOP operation is shown below.

Syntax

MOP (SCALAR SET, value)
MOP (SCALAR_ADD, value)
MOP (SCALAR_SUB, value)

MOP (SCALAR_SUBR, value)

MOP (SCALAR_MUL, value)
MOP (SCALAR_DIV, value)

MOP (SCALAR DIVR, value)

MOP (SCALAR_POW, value)

Name Type Description
value float expression The scalar value used for the matrix operation.
Notes

The scalar operations apply the specified value to each element of matrix A as follows:

SCALAR_SET

SCALAR_ADD

SCALAR_SUB

SCALAR_SUBR

Set each element of matrix A to the specified value.

MA[row, column] = value

Add the specified value to each element of matrix A.

MA[row, column] = MA[row, column] + value

Subtract the specified value from each element of matrix A.

MA[row, column] = MA[row, column] - value

Subtract the value of each element of matrix A from the specified value.

Micromega Corporation

33 uM-FPU V3 IDE Release 330

Compiler Reference

MA[row, column] = value - MA[row, column]

SCALAR_MUL Multiply each element of matrix A by the specified value.
MA[row, column] = MA[row, column] * value

SCALAR DIV Divide each element of matrix A by the specified value.
MA[row, column] = MA[row, column] / value

SCALAR_DIVR Divide the specified value by each element in matrix A.
MA[row, column] = value | MA[row, column]

SCALAR_ POW Each element of matrix A is raised to the power of the specified value.
MA[row, column] = MA[row, column] ** value

Examples

MOP (SCALAR_SET, 1.0) ; sets all elements of matrix A to 1.0

MOP (SCALAR MUL, scale) ; multiplies all elements of matrix A by the value of scale
Syntax

MOP (EWISE_SET)
MOP (EWISE_ADD)
MOP (EWISE_SUB)
MOP (EWISE_SUBR)
MOP (EWISE MUL)
MOP (EWISE_DIV)
MOP (EWISE_DIVR)
MOP (EWISE_POW)

Notes
The element-wise operations perform their operations using corresponding elements from matrix A and matrix
B and store the result in matrix A. Element-wise operations are only performed if both matrices must have the
same number of rows and columns. The operations are as follows:

EWISE SET Set each element of matrix A to the value of the element in matrix B.
MA[row, column] = MB[row, column]

EWISE_ADD Add the value of each element of matrix B to the element of matrix A.
MA[row, column] = MA[row, column] + MB[row, column]

EWISE SUB Subtract the value of each element of matrix B from the element of matrix A.
MA[row, column] = MA[row, column] - MB[row, column]

EWISE_SUBR Subtract the value of each element of matrix A from the element of matrix B.
MA[row, column] = MB[row, column]- MA[row, column)

EWISE MUL Multiply each element of matrix A by the element of matrix B.
MA[row, column] = MA[row, column] * MB[row, column]

Micromega Corporation 34 uM-FPU V3 IDE Release 330

EWISE_DIV Divide each element of matrix A by the element of matrix B.

MA[row, column] = MA[row, column] /| MB[row, column]

Compiler Reference

EWISE DIVR Divide each element of matrix B by the element of matrix A.
MA[row, column] = MB[row, column] /| MA[row, column]
EWISE_POW Each element of matrix A is raised to the power of the element of matrix B.
MA[row, column] = MA[row, column] ** MB[row, column]
Examples

MOP (EWISE_ DIV)

; each elements of matrix A is divided by the element in matrix B

Syntax
MOP (MULTIPLY)

Notes

Performs a matrix multiplication. Matrix B is multiplied by matrix C and the result is stored in matrix A. The
matrix multiply is only performed if the number of rows in matrix B is the same as the number of columns in
matrix C. The size of matrix MA will be updated to reflect the rows and columns of the resulting matrix.

MA

MB MC
0,0

. 0,0 0,1 0,2
1,0

0,0

0,1

Examples

MOP (MULTIPLY)

1,0

1,1

; multiplies matrix A by matrix B

Syntax
MOP (IDENTITY)

Notes

Sets matrix A to the identity matrix. The identity matrix has the value 1.0 stored on the diagonal and all others

elements are set to zero.

Examples

MOP (IDENTITY)

; sets matrix A to the identity matrix

Syntax
MOP (DIAGONAL, value)

Micromega Corporation 35

uM-FPU V3 IDE Release 330

Compiler Reference

Name Type Description

value float expression The value to store on the diagonal.
Notes

Sets matrix A to a diagonal matrix. The specified value is stored on the diagonal and all others elements are set

to zero.
Examples

MOP (DIAGONAL, 100.0) ; set matrix A to a diagonal matrix with 100.0 stored on the diagonal

Syntax

MOP (TRANSPOSE)

Notes
Sets matrix A to the transpose of matrix B.

Examples

MOP (TRANPOSE) ; sets matrix A to the transpose of matrix B

Syntax
return = MOP (COUNT)
return = MOP(SUM)
return = MOP(AVE)
return = MOP(MIN)
return = MOP (MAX)

Name Type Description
return long COUNT - number of elements
float SUM - sum of all elements
float AVE - average of all elements
float MIN - minimum value of all elements
float MAX - maximum value of all elements
Notes

Performs statistical calculations. The value returned is the the count, sum, average, minimum, or maximum of
all elements in matrix A.

Examples

Micromega Corporation 36 uM-FPU V3 IDE Release 330

SELECTMA (array, 3, 3) ; set matrix A as 3x3 array

MOP (SCALAR_SET, 0) ; set all values to zero

SAVEMA(1, 1, 10.0) ; store 10.0 at array(1,1)

n=MOP (COUNT) ; returns 9 (the number of elements)
maxValue=MOP (MAX) ; returns 10.0 (the maximum value in array)

Compiler Reference

Syntax
MOP (COPYAB)
MOP (COPYAC)
MOP (COPYBA)
MOP (COPYBC)
MOP (COPYCA)
MOP (COPYCB)

Notes
Copies one matrix to another.

Examples

MOP (COPYAB) ; copies matrix A to matrix B

Syntax
return = MOP(DETERMINANT)

Name Type Description
return float The determinant of matrix A.
Notes

Calculates the determinant of matrix A. Matrix A must be a 2x2 or 3x3 matrix.

Examples

value = MOP(DETERMINANT) ;return the determinant of matrix A

Syntax
MOP (INVERSE)

Notes

The inverse of matrix B is stores as matrix A. Matrix B must be a 2x2 or 3x3 matrix.

Examples

MOP (INVERSE) ; sets matrix A to the inverse of matrix B

Micromega Corporation 37 uM-FPU V3 IDE Release 330

Compiler Reference

Syntax
MOP (LOADRA, idxl, idx2, ...)
MOP (LOADRB, idx1l, idx2, ...)
MOP (LOADRC, idx1l, idx2, ...)
Name Type Description
idx1, byte constants Index values.
idx2,
Notes

The indexed load register to matrix operations can be used to quickly load a matrix by copying register values
to a matrix. Each index value is a signed 8-bit integer specifying one of the registers from O to 127. If the index
is positive, the value of the indexed register is copied to the matrix. If the index is negative, the absolute value is
used as an index, and the negative value of the indexed register is copied to the matrix. Register O is cleared to
zero before the register values are copied, so index 0 will always store a zero value in the matrix. The values are
stored sequentially, beginning with the first register in the destination matrix.

Examples
Suppose you wanted to create a 2-dimensional rotation matrix as follows:
cos -sin
A A
sin cos
A A

Assuming register 1 contains the value sin A, and register 2 contains the value cos A, the following instructions
create the matrix.

SELECTMA (array, 2, 2) ; selects matrix A as a 2x2 matrix at the register called array
MOP (LOADRA, 2, -1 , 1, 2) ;setsmatrix A to the rotation matrix shown above

Syntax
MOP (LOADBA, idxl, idx2, ...)
MOP (LOADCA, idx1l, idx2, ...)

Name Type Description
idx1, byte constants Index values.
idx2,

Notes

The indexed load matrix to matrix operations can be used to quickly copy values from one matrix to another.
Each index value is a signed 8-bit integer specifying the offset of the desired matrix element from the start of
the matrix. If the index is positive, the matrix element is copied to matrix A. If the index is negative, the
absolute value is used as an index, and the negative value of the matrix element is copied to the destination

Micromega Corporation 38 uM-FPU V3 IDE Release 330

Compiler Reference

matrix. Register O is cleared to zero before the register values are copied, so index 0 will always store a zero
value in matrix A. The values are stored sequentially, beginning with the first register in matrix A.

Examples
Suppose matrix B is a 3x3 array and you want to create a 2x2 array from the upper left corner as follows:
MB
MA
a b c
a b
d e f —>
d e
g h i

SELECTMA (oldArray, 3, 3) ;selects matrix A as a 3x3 matrix at the register called oldArray

SELECTMB (newArray, 2, 2) ; selects matrix B as a 2x2 matrix at the register called newArray
MOP (LOADBA, 0, 1, 3, 4) ; copies the subset shown above from matrix A to matrix B
Syntax
MOP (SAVEAR, idxl, idx2, ...)
Name Type Description
idx1, byte constants Index values.
idx2,
Notes

The indexed save matrix to register operation can be used to quickly extract values from a matrix. Each index

value is a signed 8-bit integer specifying one of the registers from 0 to 127. The values are stored sequentially,
beginning with the first element in matrix A. If the index is positive, the matrix value is copied to the indexed

register. If the index is negative, the matrix value is not copied.

Examples
Suppose matrix A is a 3x3 matrix containing the following values:
MA
a b c
d e f
g h i

MOP (SAVEAR,10,-1,-1,-1,11,-1,-1,-1,12) ;saves element a to register 10
; saves element e to register 11
; saves element i to register 12

Micromega Corporation 39 uM-FPU V3 IDE Release 330

Compiler Reference

Syntax
MOP (SAVEAB, idx1l, idx2, ...)
MOP (SAVEAC, idxl, idx2, ...)

Name Type Description
idx1, byte constants Index values.
idx2,

Notes

The indexed save matrix to matrix operations can be used to quickly extract values from a matrix. Each index
value is a signed 8-bit integer specifying the offset of the desired matrix element from the start of matrix A. The
values are stored sequentially in the destination matrix, beginning with the first element in matrix A. If the index
is positive, the matrix value is copied to the destination matrix. If the index is negative, the matrix value is not
copied.

POLY

Calculates the n™ order polynomial of the floating point value.
Note: Must be used inside a user-defined procedure or function.

Syntax
result = POLY(value, coeffl, coeff2, ...)
Name Type Description
result float The result of the n order polynomial equation.
value float expression The value of x in the polynomial equation.
coeffl, long constant The coefficient values the polynomial equation.
coeff2, ... Specified in order from Ay to A,

Notes

The POLY function can only be used inside an FPU function. The general form of the polynomial is:

Ao+ Ax'+ Ax2 + ... Axx®
The coefficients are specified from the highest order Ay to the lowest order A,. If one of the terms is not used in
the polynomial, a zero value must be stored in its place.

Examples
value = POLY(x, 3.0, 5.0) ;value=3x + 5
value = POLY(x, 1, 0, 0, 1) ;value=x3+ 1

The formula used to compensate for the non-linearity of the SHT1x/SHT7x humidity sensor is a second order
polynomial. The formula is as follows:

RHincar = -4.0 + 0.0405 * SOg + (-2.8 * 10 * SOg:?)

Micromega Corporation 40 uM-FPU V3 IDE Release 330

The following example makes this calculation.

Compiler Reference

RHlinear = POLY(SOrh, -2.8E-6, 0.0405, -4)
See Also
uM-FPU V3 Instruction Set. POLY
READVAR
Returns the value of the selected FPU internal register.
Syntax
result = READVAR (number)
Name Type Description
result long The FPU internal register value.
number byte constant The internal variable number. (see list below)
Notes
Internal Variable Number Description
0 A register.
1 X register.
2 Matrix A register.
3 Matrix A rows.
4 Matrix A columns.
5 Matrix B register.
6 Matrix B rows.
7 Matrix B columns.
8 Matrix C register.
9 Matrix C rows.
10 Matrix C columns.
11 Internal mode word.
12 Last status byte.
13 Clock ticks per millisecond.
14 Current length of string buffer.
15 String selection starting point.
16 String selection length.
17 8-bit character at string selection point.
18 Number of bytes in instruction buffer.
Examples
value = READVAR(15) ; returns the start of the string selection point
See Also

Micromega Corporation

41

uM-FPU V3 IDE Release 330

uM-FPU V3 Instruction Set: READVAR

Compiler Reference

RETURN

Returns from a user-defined procedure or function.

Note: Must be used inside a user-defined procedure or function.

Syntax
RETURN [returnValue]
Name Type Description
returnvalue long expression The value returned from a user-defined function.

float expression

Notes

User-defined procedure have no return value. User-defined functions must return a value.

Examples

#function 1 getID() long

return 35 ; return the value 35
#end
See Also
CONTINUE, DO...WHILE...UNTIL...LOOP, EXIT, FOR...NEXT, IF...THEN
SAVEMA, SAVEMB, SAVEMC
Store a matrix value.
Syntax
SAVEMA (row, column, value)
SAVEMB (row, column, value)
SAVEMC (row, column, value)
Name Type Description
row long constant The row number of the matrix.
column long constant The column number of the matrix.
value float expression The value to store at the specified row and column.
Notes

These procedures store a value at the specified row and column of a matrix. The row and column numbers start

from zero. If the row or column values are out of range, no value is stored.

Examples

Micromega Corporation 42

uM-FPU V3 IDE Release 330

Compiler Reference

SELECTMA (100, 3,3) ; matrix A is defined as a 3x3 matrix starting at register 100
MOP (SCALAR_SET, 0) ; set all values in matrix A to zero
SAVEMA (0, 2, pi) ; store the value pi at row 0, column 2

See Also

MOP, LOADMA, LOADMB, LOADMC, SELECTMA, SELECTMB, SELECTMC
uM-FPU V3 Instruction Set: SAVEMA, SAVEMB, SAVEMC

SELECT...CASE

Executes one of a group of statements, depending on the value of the expression or string.
Note: Must be used inside a user-defined procedure or function.

Syntax

SELECT compareItem
statements

[CASE compareValue [, compareValue]...
statements]...

[ELSE
statements]

ENDSELECT

Name Description

compareItem A numeric expression or string procedure.

compareValue A numeric or string constant.

statements One or more statements that execute if a compareValue is equal to the value of
compareltem.

Notes
The SELECT clause specifies a numeric expression or string procedure that will be used in the CASE clauses. If
a numeric expression is specified, then all compareValues in the CASE clauses must be a numeric constants of
the same data type as the compareltem. If the STRSEL or STRFIELD procedure is specified, then all
compareValues in the CASE clauses must be a string constants. The CASE clauses are evaluated sequentially. If
a compareValue is equal to the compareltem, the statements in that CASE clause are executed. If no CASE
clause has a match and an ELSE clause is included, the statements in the ELSE clause are executed.

Examples

Micromega Corporation 43 uM-FPU V3 IDE Release 330

n equ L10

SELECT n

CASE 1
strset("Blue") ;if n = 1, then set string = Blue,

CASE 2, 3

Compiler Reference

strset("Green") ;if n =2 or n = 3, then set string = Green

ELSE
strset("Black") ; otherwise, set string = Black

ENDSELECT

n equ L10

SELECT STRSEL(0,127) ; select entire string buffer for comparison

CASE "Blue"
n=1 ; if string = Blue, then set n = 1

CASE "Green", "Red"

n =2 ; if string=Green or string = Red, then set n = 2
ELSE
n=20 ; otherwise, setn =0
ENDSELECT
See Also

DO...WHILE...UNTIL...LOOP, FOR...NEXT, IF...THEN, IF...THEN...ELSE

SELECTMA, SELECTMB, SELECTMC

Select the registers used for matrix operations.

Syntax
SELECTMA (reg, rows, columns)
SELECTMB(reg, rows, columns)
SELECTMC(reg, rows, columns)

Name Type Description

reg register The first register of the matrix.

rows long constant The number of rows.

columns long constant The number of columns.
Notes

Micromega Corporation 44

uM-FPU V3 IDE Release 330

Compiler Reference

The reg parameter is the first register of the array. The rows and columns parameters specify the size of the
matrix. Matrix values are stored in sequential registers. Register X is also set to point to the first register of the

matrix.
Examples
SELECTMA (100, 3,3) ; matrix A is defined as a 3x3 matrix starting at register 100
SELECTMB(109, 2,3) ; matrix B is defined as a 2x3 matrix starting at register 109
SELECTMC (115, 3,1) ; matrix C is defined as a 3x1 matrix starting at register 115
See Also

MOP, LOADMA, LOADMB, LOADMC, SAVEMA, SAVEMB, SAVEMC
uM-FPU V3 Instruction Set: SELECTMA, SELECTMB, SELECTMC

SERIAL

The SERIAL function and procedures are used to send serial data to the SEROUT pin and read serial data from
the SERIN pin. The first argument of the SERIAL function or procedure is a special symbol name that
identifies the type of operation. The SERIAL operations are summarized as follows:

SERIAL(SET BAUD, baud)
SERIAL(WRITE TEXT, string)
SERIAL(WRITE TEXTZ, string)
SERIAL (WRITE STRBUF)
SERIAL (WRITE_STRSEL)
SERIAL(WRITE_CHAR, value)
SERIAL (DISABLE_INPUT)
SERIAL(ENABLE CHAR)
SERIAL(STATUS CHAR)

result = SERIAL(READ CHAR)
SERIAL (ENABLE NMEA)

SERIAL (STATUS_ NMEA)

SERIAL (READ NMEA)

See Also
uM-FPU V3 Instruction Set: SEROUT, SERIN

A detailed description of each SERIAL operation is shown below.

Syntax
SERIAL(SET_BAUD, baud)
Name Type Description
baud long constant The baud rate for the SEROUT and SERIN pins.
(0, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, or
115200)
Notes

Micromega Corporation 45 uM-FPU V3 IDE Release 330

Compiler Reference

Sets the baud rate for both the SEROUT and SERIN pins. If the baud rate is specified as 0, the FPU debug mode
is enabled and the baud rate is set to 57,600 baud. For all other baud rates, the FPU debug mode is disabled, so
the SEROUT and SERIN pins can be used for serial data transfers.

Examples
SERIAL (SET BAUD, 4800) ; sets the baud rate to 4800 baud
Syntax
SERIAL(WRITE TEXT, string)
Name Type Description
string string constant The string to send to the SEROUT pin.
Notes

Writes the string to the SEROUT pin.

Examples
SERIAL(WRITE TEXT, "abc") ;sends abc tothe SEROUT pin
Syntax
SERIAL (WRITE TEXTZ, string)
Name Type Description
string string constant The string to send to the SEROUT pin.
Notes

Writes the string to the SEROUT pin, followed by a zero byte.

Examples

SERIAL(WRITE TEXTZ, "abc") ;sends abc and a zero byte to the SEROUT pin

Syntax
SERIAL(WRITE_ STRBUF)

Notes
Writes the contents of the string buffer to the SEROUT pin.

Examples

SERIAL (WRITE STRBUF) ; sends the contents of the string buffer to the SEROUT pin

Micromega Corporation 46 uM-FPU V3 IDE Release 330

Compiler Reference

Syntax
SERIAL(WRITE_ STRSEL)

Notes
Writes the current string selection to the SEROUT pin.

Examples
SERIAL (WRITE STRSEL) ; sends the current string selection to the SEROUT pin
Syntax
SERIAL(WRITE CHAR, value)
Name Type Description
value long expression The lower 8 bits of the value is output to the SEROUT pin.
Notes

Writes the lower 8 bits of the value to the SEROUT pin.

Examples

SERIAL(WRITE CHAR, $32) ; sends $32 (the digit 2) to the SEROUT pin
SERIAL(WRITE_CHAR, value) ;sends the lower 8 bits of value to the SEROUT pin

Syntax
SERIAL(DISABLE_INPUT)

Notes
The SERIN pin is disabled.

Examples

SERIAL (DISABLE INPUT) ; disables the SERIN pin

Syntax
SERIAL(ENABLE CHAR)

Notes
The SERIN pin is enabled for character input. Received characters are stored in a 160 byte input buffer. The
serial input status can be checked with the SERTIAL (STATUS_CHAR) procedure and characters can be read
using the SERIAL (READ CHAR) function.

Examples

Micromega Corporation 47 uM-FPU V3 IDE Release 330

Compiler Reference

SERIAL (ENABLE_CHAR) ; enables the SERIN pin for character input

Syntax
SERIAL(STATUS_ CHAR)

Notes
The FPU status byte is set to zero (Z) if the character input buffer is empty, or non-zero (NZ) if the input buffer
is not empty.

Examples

SERIAL (STATUS_ CHAR) ; get the character input status
if STATUS(Z) then return ;return from the function if the buffer is empty

Syntax
result = SERIAL(READ_CHAR)
Name Type Description
result long The next available serial character value.
Notes

Wait for the next available serial input character, and return the character. This function only waits if the
instruction buffer is empty. The IDE compiler automatically adds an FPU wait call if the function is called from
microcontroller code. If this function is used in a user-defined function, the user must be sure that an FPU wait
call is inserted in the microcontroller code immediately after the user-defined function call. If there are other
instructions in the instruction buffer, or another instruction is sent before the SERIAL(READ CHAR) function
has completed, it will terminate and return a zero value.

A known problem with the V3.1 chip is that it carriage return characters (0x0D) are returned as zero bytes.

Examples

ch = SERIAL(READ_CHAR) ; returns the next serial input character

Syntax
SERIAL (ENABLE NMEA)

Notes
The SERIN pin is enabled for NMEA input. Serial input is scanned for NMEA sentences which are then stored
in a 200 byte buffer. This allows subsequent NMEA sentences to be buffered while the current sentence is being
processed. The sentence prefix character ($), trailing checksum characters (if specified), and the terminator
(CR, LF) are not stored in the buffer. NMEA sentences are transferred to the string buffer for processing using
the SERIAL (READ NMEA) procedure, and the NMEA input status can be checked with the
SERIAL(STATUS_ NMEA) procedure.

Micromega Corporation 48 uM-FPU V3 IDE Release 330

Compiler Reference

Examples

SERIAL (ENABLE NMEA) ; enables the SERIN pin for NMEA input

Syntax
SERIAL(STATUS_ NMEA)

Notes
The FPU status byte is set to zero (Z) if the NMEA sentence buffer is empty, or non-zero (NZ) if at least one

NMEA sentence is available in the buffer.

Examples

SERIAL (STATUS_NMEA) ; get the NMEA input status
if STATUS(Z) then return ;return from the function if the buffer is empty

Syntax
SERIAL (READ NMEA)

Notes
Read the next NMEA sentence from the NMEA input buffer and transfer it to string buffer. The first field of the
string is automatically selected so that the STRCMP function can be used to check the sentence type. If the
sentence is valid, the FPU status byte is set to greater-than (GT). If an error occurred, the FPU status byte is set
to less-than (LT) and the special status bits NMEA_CHECKSUM and NMEA OVERRUN are set. The STATUS
function can be used to check these bits. This procedure only waits if the instruction buffer is empty. The IDE
compiler automatically adds an FPU wait call if the procedure is called from microcontroller code. If this
procedure is used in a user-defined function, the user must be sure that an FPU wait call is inserted in the
microcontroller code immediately after the function call. If there are other instructions in the instruction buffer,
or another instruction is sent before the SERIAL (READ NMEA) procedure has completed, it will terminate and
the string buffer will be empty.

Examples

SERIAL (READ NMEA) ; sends abc to the SEROUT pin
if STATUS(GT) then return ;return from

SETOUT

Set the OUTO or OUT1 output pin.

Syntax
SETOUT (pin, LOW)
SETOUT (pin, HIGH)
SETOUT (pin, TOGGLE)

Micromega Corporation 49 uM-FPU V3 IDE Release 330

SETOUT (pin, HIZ)

Compiler Reference

Name Type Description
pin long constant Output pin (0 or 1).
action long constant
Notes
The output pins OUTO0 and OUT1 are set according to the action specified.
LOowW set output pin low
HIGH set output pin low
TOGGLE toggle the output pin
HIZ set output pin to high impedance
Examples
SETOUT (0, LOW) ; set OUTO to low
SETOUT (1, TOGGLE) ; toggle the value of OUTO
SETOUT (0, HIZ) ; set OUTO to low
See Also
uM-FPU V3 Instruction Set. SETOUT
STATUS
Checks the FPU status bits .
Syntax
STATUS (conditionCode)
Name Type Description
conditionCode |literal string A condition code symbol.
Notes

This function can only be used in a conditional expression. The STATUS condition is true if the FPU status byte
agrees with if the specified condition code. If the NMEA_CHECKSUM or NMEA_OVERRUN condition code
is specified, the STATUS condition is true if the corresponding bit is set.

The condition code symbols are as follows:

Z,NZ,EQ,NE, LT, GE, LE, GT, INF, FIN, PLUS, MINUS, NAN, NOTNAN

NMEA CHECKSUM, NMEA OVERRUN

Examples

Micromega Corporation

50 uM-FPU V3 IDE Release 330

Compiler Reference

if status(LT) then
if status(NMEA OVERRUN) then
return -1
elseif status(NMEA_CHECKSUM) then
return -2
endif
endif

See Also
conditional expression

STRBYTE

Insert 8-bit character at the string selection point.

Syntax
STRBYTE (value)

Name Type Description

value long expression 8-bit character to insert

Notes
The 8-bit character is stored at the string selection point. If the selection length is zero, the 8-bit character is
inserted into the string at the selection point. If the selection length is not zero, the selected characters are
replaced. The selection point is updated to point immediately after the inserted string, so multiple insertions can
be appended.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

n equ L10

STRSET("") ; string buffer = {}

n = 36

STRBYTE (0x30+n/10) ; stores the digit 3 (0x33), string buffer = 3{}

STRBYTE (0x30+n%10) ; stores the digit 6 (0x36), string buffer = 36{}
See Also

FTOA, LTOA, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS, STRLONG,
STRSEL, STRSET
uM-FPU V3 Instruction Set: STRBYTE

STRFCHR

Sets the field separator characters used by the STRFIELD procedure.

Syntax
STRFCHR (string)

Micromega Corporation 51 uM-FPU V3 IDE Release 330

Compiler Reference

Name Type Description
string string A string containing the list of field separator characters.
Notes

The default field separator is a comma. This procedure can be used to select other field separators. The order of
the characters in the string is not important.

Examples
See the examples for STRFIELD.

See Also
FTOA, LTOA, STRBYTE, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS, STRLONG,
STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC, STRDEC

STRFIELD
Find the specified field in the string.
Syntax
STRFIELD(field)
Name Type Description
field register Specifies the field number.
long constant
Notes

The £ield parameter can be a register or a long constant. If a register is specified, the value of the register
specifies the field number. Fields are numbered from 1 to n, and are separated by the field separator characters.
The default field separator character is the comma. Other field separators can be specified using the STRFCHR
procedure. The selection point is set to the specified field. If the field number is zero, the selection point is set to
the start of the buffer. If the field number is greater than the number of fields, the selection point is set to the end
of the buffer.

Examples
The following example shows how a date/time string can be parsed.
Note: In the following example the {} characters are used to shown the string selection point.

year equ L10
minute equ Ll11

STRSET("2010-7-20 10:57 pm") ; string buffer = 2010-7-20 10:57 pm{}
STRFCHR("-: ") ; use dash, colon, space as field separators
STRFIELD(1) ; string buffer = {2010}-7-20 10:57 pm
year = STRLONG () ; convert string to year

STRFIELD(5) ; string buffer = 2010-7-20 10: {57} pm
minutes = STRLONG () ; convert string to minutes

Micromega Corporation 52 uM-FPU V3 IDE Release 330

Compiler Reference

See Also
FTOA, LTOA, STRBYTE, STRFCHR, STRFIND, STRFLOAT, STRINC, STRINS, STRLONG,
STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC, STRDEC

STRFIND

Find the string in the current string selection.

Syntax
STRFIND(string)

Name Type Description

string string The string to find in the string selection.

Notes
This procedure searches in the current string selection for the specified string. If the string is found, the string
selection is changed to select the matching string.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

STRSET ("abcdef") ; string buffer = abcdef{}

STRSEL(0,127) ; string buffer = {abcdef}

STRFIND("d") ; string buffer = abc{d}ef
See Also

FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFLOAT, STRINC, STRINS, STRLONG,
STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC, STRDEC

STRFLOAT
Returns the floating point value of the current string selection.
Syntax
result = STRFLOAT ()
Name Type Description
result float The converted value.
Notes

Converts the current string selection to a floating point value, and returns the value. Conversion stops at the first
character that is not a valid character for a floating point number.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

Micromega Corporation 53 uM-FPU V3 IDE Release 330

Compiler Reference

; assume string buffer = 35.5,1e5,100{}

STRSEL(5,7) ; string buffer = 35.5,{1e5,100}

result = STRFLOAT() ; returns 100000.0 (terminates on the comma)

STRSEL(0,255) ; string buffer = {35.5,1e5,100}

result = STRFLOAT() ; returns 35.5 (terminates on the comma)
See Also

STRBYTE, STRFCHR, STRFIELD, STRFIND, STRINC, STRINS, STRLONG, STRSEL,
STRSET, FTOA, LTOA
uM-FPU V3 Instruction Set: STRTOF

Increment or decrement the string selection point.
Syntax
STRINC(increment)
Name Type Description
increment register Specifies the increment or decrement amount.

long constant

Notes
The increment parameter can be a register or a long constant. If a register is specified, the value of the
register specifies the increment or decrement value. If the value is positive, the selection point is incremented. If
the value is negative, then selection point is decremented.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

n equ L10

STRSET ("abcdef") ; string buffer = abcdef{}
STRSEL(0,127) ; string buffer = {abcdef}
STRFIND("d") ; string buffer = abc{d}ef
STRINC(-2) ; string buffer = a{}bcdef
STRINS("x") ; string buffer = ax{}bcdef
n =3
STRINC(n) ; string buffer = axbcd{ }ef
STRINS("y") ; string buffer = axbedy{}ef
See Also

FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINS,
STRLONG, STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC, STRDEC

Micromega Corporation 54 uM-FPU V3 IDE Release 330

Compiler Reference

STRINS

Insert string at the string selection point.

Syntax
STRINS (string)

Name Type Description

string string String to insert at selection point.

Notes

The string is stored at the string selection point. If the selection length is zero, the string is inserted at the
selection point. If the selection length is not zero, the selected characters are replaced. The selection point is

updated to point immediately after the inserted string, so multiple insertions can be appended.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

STRSET ("abcd") ; string buffer = abed{}

STRSEL(1,2) ; string selection = a{bc}d

STRINS("x") ; string buffer = ax{}d

STRINS("yz") ; string buffer = axy{}zd
See Also

FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC,
STRLONG, STRSEL, STRSET
uM-FPU V3 Instruction Set: STRINC

STRINS,

STRLONG
Returns the long integer value of the current string selection.
Syntax
result = STRLONG()
Name Type Description
result long The converted value.
Notes

Converts the current string selection to a long integer value, and returns the value. Conversion stops at the first

character that is not a valid character for a long integer number.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

Micromega Corporation 55 uM-FPU V3 IDE Release 330

Compiler Reference

; assume string buffer = 35.5,1e5,100{}

STRSEL(5,7) ; string buffer = 35.5,{1e5,100}

result = STRFLOAT() ; returns 1 (terminates on the e)

STRSEL(0,255) ; string buffer = {35.5,1e5,100}

result = STRFLOAT() ; returns 35 (terminates on the decimal point)
See Also

STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS, STRSEL,
STRSET, FTOA, LTOA
uM-FPU V3 Instruction Set: STRTOL

String Constant

String constants are used as arguments to some of the string procedures and for string comparisons. A string
constant is enclosed in double quote characters. Special characters can be entered using a backslash followed by
two hexadecimal digits. The backslash and double quote characters can be entered by preceding them with a
backslash.

Examples
String Constant Actual String
"GPRMC" GPRMC
"N" N
"sample" sample
"string2\0D\OA" string2<carriage return><linefeed>
"5\\3" 5\3
"this \"one\" this "one"

STRSEL

Set the string selection point

Syntax
STRSEL([start,] length)
Name Type Description
start register The start of the string selection.
long constant
length long expression The length of the string selection.
Notes

If the start parameter is not specified, the start of the current string selection is used. The start parameter
can be a register or a long constant. If a register is specified, the value of the register specifies the start of the
selection point. If the start value is greater than the length of the string buffer, it is adjusted to the end of the
buffer. The 1length parameter can be any long expression. If the string selection exceeds the length of the
string buffer, it is adjusted to fit the string buffer.

Examples
Note: In the following example the {} characters are used to shown the string selection point.

Micromega Corporation 56 uM-FPU V3 IDE Release 330

Compiler Reference

n equ L10

STRSET("0123456789ABCDEF") ; string buffer = 0123456789ABCDEF{}
STRSEL(5, 3) ; string buffer = 01234 {567} 89ABCDEF
n =11
STRSEL(n, 1) ; string buffer = 0123456789A{B}CDEF
See Also
FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS,
STRLONG, STRSET
uM-FPU V3 Instruction Set: STRINC, STRDEC
Copy the string to the string buffer.
Syntax
STRSET (string)
Name Type Description
string string String to store in string buffer.
Notes
The string is stored in the string buffer, and the selection point is set to the end of the string.
Examples
Note: In the following example the {} characters are used to shown the string selection point.
STRSET ("abcd") ; string buffer = abcd{}
See Also
FTOA, LTOA, STRBYTE, STRFCHR, STRFIELD, STRFIND, STRFLOAT, STRINC, STRINS,
STRLONG, STRSEL
uM-FPU V3 Instruction Set: STRSET
TICKLONG
Returns the number of milliseconds that have elapsed since the FPU timer was started.
Syntax
result = TICKLONG()
Name Type Description
result long The number of milliseconds since the FPU timer was started.
Notes

Micromega Corporation 57 uM-FPU V3 IDE Release 330

Compiler Reference

Returns the number of milliseconds that have elapsed since the FPU timer was started by the TIMESET
procedure. The internal millisecond counter is a 32-bit register.

Examples

result = TICKLONG() ; returns the number of msec since the FPU timer was started

See Also
TIMELONG, TIMESET
uM-FPU V3 Instruction Set: TICKLONG

TIMELONG
Returns the number of seconds that have elapsed since the FPU timer was started.
Syntax
result = TIMELONG()
Name Type Description
result long The number of seconds since the FPU timer was started.
Notes

Returns the number of seconds that have elapsed since the FPU timer was started by the TIMESET procedure.
The internal second counter is a 32-bit register.

Examples

result = TIMELONG/() ; returns the number of seconds since the FPU timer was started

See Also
TICKLONG, TIMESET
uM-FPU V3 Instruction Set: TIMELONG

TIMESET

Set internal timer values.

Syntax
TIMESET (seconds)

Name Type Description

seconds long expression The internal seconds timer is set to this value.

Notes
The internal seconds timer is set to the value specified and the internal millisecond timer is set to zero.

Micromega Corporation 58 uM-FPU V3 IDE Release 330

Compiler Reference

Examples

TIMESET(0) ; set seconds timer and msec timer to zero

See Also
TICKLONG, TIMELONG
uM-FPU V3 Instruction Set: TIMESET

TRACEON, TRACEOFF

Turn the debug instruction trace on or off.

Syntax
TRACEON
TRACEOFF

Notes
These procedure provide manual control over the debug instruction trace. They can be used to only trace
specific sections of code. If the debugger is disabled, these procedures are ignored.

Examples

TRACEON ; turn on debug trace

; all instructions in this section are traced
TRACEOFF ; turn off debug trace

; no instructions in this section are traced
TRACEON ; turn on debug trace

See Also
TRACEREG, TRACESTR, BREAK
uM-FPU V3 Instruction Set: TRACEON, TRACEOFF

TRACEREG

Display register value in the debug trace.

Syntax
TRACEREG (reg)

Name Type Description

reg register Register to trace.

Notes
If the debugger is enabled, the register number, hexadecimal value, long integer value, and the floating point
value of the register contents are displayed in the debug window. If the debugger is disabled, this procedure is
ignored.

Micromega Corporation 59 uM-FPU V3 IDE Release 330

Compiler Reference

Examples
In this example, the following text would be displayed in the debug trace window.
R10:00000005, 5, 7.006492e-45
R11:3FC00000, 1069547520, 1.5

cnt equ L10
value equ F1l1

cnt = 5 ; set long integer value

value = 1.5 ; set floating point value

TRACEREG (cnt) ; displays register 10 in debug trace

TRACEREG (value) ; displays register 11 in debug trace
See Also

BREAK, TRACEOFF, TRACEON, TRACESTR
uM-FPU V3 Instruction Set: TRACEREG

TRACESTR

Display message string in the debug trace.

Syntax
TRACESTR(string)

Name Type Description

string string The message string.

Notes
If the debugger is enabled, the message string is displayed in the debug trace window. If the debugger is
disabled, this procedure is ignored.

Examples
In this example, the following text would be displayed in the debug trace window.
"testl"
TRACESTR("testl") ; display trace message in debug trace
See Also

BREAK, TRACEOFF, TRACEON, TRACEREG
uM-FPU V3 Instruction Set: TRACESTR

User-defined Functions
User-defined functions can be stored in Flash memory and EEPROM memory on the uM-FPU V3.1 chip.

Defining Functions

Micromega Corporation 60 uM-FPU V3 IDE Release 330

Compiler Reference

The #FUNCTION and #EEFUNCTION directives are used to define Flash memory and EEPROM functions. All
statements between the #FUNCTION and #EEFUNCTION directives and the next #FUNCTION,
#EEFUNCTION, or #END directive will be compiled and stored as part of the function.

The #FUNC and #EEFUNC directives can be used at the start of the program to define functions prototypes. The
use of function prototypes is recommended. It allows the allocation of function storage to be easily maintained,
and supports calling functions that are defined later in the program.

Functions can optionally define parameters to be passed when the function is called, and can optionally return a
value. A procedure is a function with no return value. The data type of the parameters and the return value must
be declared when the function is declared.

#FUNC 0 getID() long ; Function: no parameters, returns long
#FUNC % getDistance() float ; Function: no parameters, returns float
#FUNC % getBearing(float, float) float ; Function: two parameters, returns float
#FUNC % update ; Procedure: no parameters

#FUNC % getLocation(long) ; Procedure: one parameter

Passing Parameters and Return Values

When parameters are defined for a function, the parameter values are passed in registers 1 through 9, with the
first parameter in register 1, the second parameter in register 2, etc. The compiler automatically defines local
symbols argl, arg2, ... with the correct data type. These symbols can then be used inside the function.
When a return value is defined for a function, the value specified by a return statement is returned by the
function in register 0. A RETURN statement must be the last statement of all functions that return a value.

#FUNC 0 addOoffset(float) float ; function prototype
#FUNCTION addOffset(float) float ; function defintion

return argl + 0.275 ; add 0.275 to parameter 1 and return value
#END

Calling Functions

Once a function has been defined using a #FUNC, #FUNCTION, #EEFUNC, or #EEFUNCTION directive, the
function can be called simply by using the function name in a statement or expression. Functions (user-defined
functions that return a value) can be used in expressions. Procedures (user-defined functions that don’t return a
value) are called as a statement. If a function has no arguments, a set a parenthesis is still required. If a
procedure has no arguments, the parentheses are optional.

n = getID() ; function call
x = y + addoffset(y) ; function call
update ; procedure call
getLocation(1) ; procedure call

Micromega Corporation 61 uM-FPU V3 IDE Release 330

Compiler Reference

Nested Functions Calls

Functions can call other functions, with a maximum of 16 levels of nesting supported. Since all function
parameters are passed in registers 1 to 9, care must be taken to ensure that the value of registers 1 to 9 are still
valid after a nested function call. The values passed as argl, arg2, ... may be modified by calling
another function. If parameter values need to be used after other nested function calls, they should be copied to
other registers first.

See Also
#EEFUNC, #EEFUNCTION, #END, #FUNC, #FUNCTION
uM-FPU V3 Instruction Set: EECALL, FCALL, RET, RET,cc

#EEFUNC

Prototype for user-defined function stored in EEPROM.

Syntax
#EEFUNC number name[(arglType, arg2Type, ...)] user-defined procedure
#EEFUNC number name([arglType, arg2Type, ...]) returnType] user-defined function
Name Type Description
number byte constant Assign function to the specified EEPROM slot (0-255).
% Assign function to the next available EEPROM slot.
name register Procedure name or function name.
arglType, register Argument types. e.g. FLOAT, LONG, ULONG
arg2Type,
returnType register Function return type. e.g. FLOAT, LONG, ULONG
Notes

The #EEFUNC directive is used to define a prototype for user-defined function stored in EEPROM. The number
specifies the EEPROM slot that the function is stored in. If a percent character (%) is used in place of the
number, the function will be stored at the next available EEPROM slot. Prototypes should be placed at the start
of the program prior to any user-defined functions. Number specifies the EEPROM slot that the function is
stored in. The symbol name for the user-defined function (name), the data type of the any arguments (arglType,
arg2Type, ...), and the data type of the return value (returnType) are defined. The IDE compiler uses this
information to generate the code for calls to user-defined functions and procedures.

Examples
See the examples for #EEFUNCTION.

See Also
#EEFUNCTION, #FUNC, #FUNCTION, User-defined Functions

#EEFUNCTION

Function definition for user-defined EEPROM function.

Syntax
#EEFUNCTION [number] name[(arglType, arg2Type, ...)] user-defined procedure
#EEFUNCTION [number] name([arglType, arg2Type, ...]) returnType] user-defined function

Micromega Corporation 62 uM-FPU V3 IDE Release 330

Compiler Reference

Name Type Description

number byte constant Assign function to the specified EEPROM slot (0-255).

name register Procedure name or function name.

arglType, register Argument types. e.g. FLOAT, LONG, ULONG

arg2Type,

returnType register Function return type. e.g. FLOAT, LONG, ULONG
Notes

The #EEFUNCTION directive is used to define user-defined function stored in EEPROM. Number specifies the
EEPROM slot that the function is stored in. If an #EEFUNC prototype directive was previously defined for this
function, number should not be specified. The number specifies the EEPROM slot that the function is stored in.
The symbol name for the user-defined function (name), the data type of the any arguments (arglType, arg2Type,
...), and the data type of the return value (refurnType) are defined. All statements between the #EEFUNCTION
directive and the next #FUNCTION, #EEFUNCTION, or #END directive will be compiled and stored as part of
the function. If returnType is specified by the directive, the last statement of the function must be a RETURN

statement.

Examples

#EEFUNC 0 getID() long

#EEFUNC % getDistance() float
#EEFUNC % getLocation(long)

#EEFUNCTION getID() long

; EEPROM function at slot O
; EEPROM function at next available slot
; EEPROM procedure at next available slot

; EEPROM function, returns long

#EEFUNCTION getDistance() float ; EEPROM function , returns float

#EEFUNCTION getLocation(long)

See Also

; EEPROM procedure

#EEFUNC, #END, #FUNC, #FUNCTION, RETURN, User-defined Functions
uM-FPU V3 Instruction Set: EECALL, FCALL, RET, RET,cc

#END

End of user-defined function.

Syntax
#END

Notes

Specifies the end of a user-defined function. If another function is defined immediately after the current
function, the #END directive is not required, since the #FUNCTION, and #EEFUNCTION directives will also
end the current function.

Examples

Micromega Corporation

63 uM-FPU V3 IDE Release 330

Compiler Reference

#function getID() long ; start of function
return(23) ; return long integer value = 23
#end ; end of function
See Also

#EEFUNCTION, #FUNCTION, User-defined Functions

#FUNC

Prototype for user-defined function stored in Flash memory.

Syntax
#FUNC number name[(arglType, arg2Type, ...)] user-defined procedure
#FUNC number name([arglType, arg2Type, ...]) returnType] user-defined function
Name Type Description
number byte constant Assign function to the specified Flash memory function (0-63).
% Assign function to the next available EEPROM slot.
name register Procedure name or function name.
arglType, register Argument types. e.g. FLOAT, LONG, ULONG
arg2Type,
returnType register Function return type. e.g. FLOAT, LONG, ULONG
Notes

The #FUNC directive is used to define a prototype for user-defined function stored in Flash memory. Number
specifies where to store the Flash memory function. If a percent character (%) is used in place of number, the
function will be stored at the next available Flash memory function number. Prototypes should be placed at the
start of the program prior to any user-defined functions. The symbol name for the user-defined function (name),
the data type of the any arguments (arglType, arg2Type, ...), and the data type of the return value (returnType)
are defined. The IDE compiler uses this information to generate the code for calls to user-defined functions and
procedures.

Examples
See the examples for #FUNCTION.

See Also
#EEFUNC, #EEFUNCTION, #FUNCTION, User-defined Functions

#FUNCTION

Display register value in the debug trace.

Syntax
#FUNCTION number name[(arglType, arg2Type, ...)] user-defined procedure
#FUNCTION number name([arglType, arg2Type, ...]) returnType] user-defined function
Name Type Description
reg register Register to trace.

Micromega Corporation 64 uM-FPU V3 IDE Release 330

Compiler Reference

Notes
The #FUNCTION directive is used to define user-defined function stored in Flash memory. Number specifies
where to store the Flash memory function. If an #FUNC prototype directive was previously defined for this
function, number should not be specified. The symbol name for the user-defined function (name), the data type
of the any arguments (arglType, arg2Type, ...), and the data type of the return value (returnType) are defined.
All statements between the #FUNCTION directive and the next #FUNCTION, #EEFUNCTION, or #END
directive will be compiled and stored as part of the function. If refurnType is specified by the directive, the last
statement of the function must be a RETURN statement.

Examples
#FUNC 0 getID() long ; Flash memory function at slot O
#FUNC % getDistance() float ; Flash memory function at next available slot
#FUNC % getLocation(long) ; Flash memory procedure at next available slot
#FUNCTION getID() long ; Flash memory function, returns long
#FUNCTION getDistance() float ; Flash memory function , returns float
#FUNCTION getLocation(long) ; Flash memory procedure

See Also

#EEFUNC, #EEFUNCTION, #END, #FUNC, RETURN, User-defined Functions
uM-FPU V3 Instruction Set: EECALL, FCALL, RET, RET,cc

Micromega Corporation 65 uM-FPU V3 IDE Release 330

